

Machine Learning Engineer Nanodegree

Capstone Report

Using Deep Neural Networks to Predict
Future Stock Prices

Jakob Salomonsson
March 10th, 2018

2

Table of Contents

1.	 DEFINITION	...	3	
1.1	 PROJECT	OVERVIEW	..	3	
1.2	 PROBLEM	STATEMENT	...	3	
1.3	 METRICS	...	4	

2.	 ANALYSIS	..	5	
2.1	 DATA	EXPLORATION	..	5	
2.1	 EXPLORATORY	VISUALISATION	..	6	
2.2	 ALGORITHMS	AND	TECHNIQUES	..	8	

2.2.1	 LSTM	Networks	..	8	
2.2.2	 Loss	Function	...	9	

2.3	 BENCHMARK	..	9	

3.	 METHODOLOGY	..	10	
3.1	 DATA	PRE-PROCESSING	...	10	
3.2	 IMPLEMENTATION	..	14	

3.2.1	 Single	Day	Predictions	with	the	LSTM	Algorithm	...	14	
3.2.2	 Ten-Day	Predictions	with	the	LSTM	...	14	

3.3	 REFINEMENT	...	15	
3.3.1	 LSTM	Single	Day	Predictions	..	15	
3.3.2	 LSTM	Ten-Day	Predictions	...	16	

4.	 RESULTS	..	17	
4.1	 MODEL	EVALUATION	AND	VALIDATION	..	17	

4.1.1	 LSTM	Model	for	Single	Day	Predictions	...	17	
4.1.2	 LSTM	Model	for	Ten-Day	Predictions	...	18	

4.2	 JUSTIFICATION	...	19	

5.	 CONCLUSIONS	...	21	
5.1	 REFLECTIONS	...	21	
5.2	 IMPROVEMENTS	...	22	

BIBLIOGRAPHY	..	23	

3

1. Definition

1.1 Project Overview

Humans started to use money as a commodity to do trade for more than 2,500 years ago [1].
It can be claimed that ever since then, mankind has had an urge for making money, and arguably, at no
other place is this more obvious than on the stock market. Both large institutions and private investors
have today many alternatives when it comes to where and how to make their investments. Common
for all however, is that they all want to sell for a higher price than what they bought for, why trying to
predict the future is highly desirable. As a consequence, numerous strategies have been developed,
where some are more efficient than others.

Machine Learning algorithms are no exception. A lot of research has been done within the field
with various results. This blog post [2], where the author used a Deep Neural Network to predict the
future price of Bitcoin and Ethereum, as well as this paper [3], influenced me in my choice.

Rather than predicting cryptocurrency prices, this project focus on stocks in the OMX
Stockholm Mid Cap Index. Historical prices for each individual stock are processed and used to predict
the stock price for the subsequent day and ten days ahead. The data is extracted from Yahoo! Finance
[4].

My personal motivation for investigating this domain is the fact that I’m about to graduate from
University, with quite some loans accumulated. Developing, or at least taking a step closer, to a system
that can beat the market and help paying back the loans, would be great news for me.

1.2 Problem Statement

During the project, the historical stock price for each individual stock in the OMX Stockholm
Mid Cap Index is processed. Logistic Regression and LSTM Deep Learning models are used, in this
regression problem, to predict the price for each stock, both one and ten trading days into the future.

Input data are times series, covering prices (such as low and high, open and close) and volumes
for each date. It is downloaded in an automated way from Yahoo! Finance to facilitate future updates.
Before being fed into the model, the data needs to be processed to remove NaN-values and other
disturbances. It is also normalised to facilitate comparison between different stocks, as well as scaled,
to minimize training error and training time. The data is plotted and compared with OMX 30 to display
the training and test sets as well as to reveal any eventual flaws.

The models themselves are built in Keras library with TensorFlow run as backend. Logistic
Regression models can easily be imported from Scikit-learn, but to keep a homogeneous workflow they
are built with the same library as the LSTM models. Different kind of architectures are tested out, with
some inspiration from earlier work in the field [2] [5] [6] on how to tweak it. The Logistic Regression

4

model constitutes of one single Dense layer, while the LSTM models make up of either one or two
recurrent LSTM layers with Dropouts in between, before adding a core Dense layer. Combinations of
various number of neurons, epochs, batch sizes, different activation functions and optimizers, as well
as window sizes and Dropouts for the LSTM models, are evaluated during the project. Keras’
documentation [7] [8] [9] provide some guidance in this task.

Subsequently, the scaled single-day predictions for both the Logistic Regression and LSTM
Network are inverted before plotted and compared. The better alternative is chosen for making ten-
day predictions as it’s believed that unsatisfying single-day predictions will most certainly lead to even
more unsatisfying ten-day predictions.

Ultimately, the top five predicted stock increases, the most recent ten days, serve as input to
an optimizer algorithm (not in the scope of this project), which will allocate based on Sharpe Ratio.

1.3 Metrics

 The models’ performance on both the train and test sets are evaluated based on Mean Squared
Error (MSE), which is commonly used for regression tasks. MSE is to prefer since it eliminates the effect
of the sign (we want underestimates to be penalised similarly to overestimates) as well as it adds more
weight to larger errors rather than smaller. It is defined as:

𝑀𝑆𝐸 𝜃 =
1
𝑚

(ℎ* 𝑥 , − 𝑦(,))0
1

,23

Where m is the number of training examples, 𝑥 , and 𝑦(,) are the input vector and the class label for
the 𝑖56 training example, 𝜃 are the chosen parameter values while ℎ* 𝑥 , is the algorithm’s prediction
for the 𝑖56 training example using the parameter 𝜃. Using an error function that calculates the absolute
value, rather than the squared, would give the same result but it requires more complicated use. The
top five stocks are chosen based on the highest predicted value increase, in percentage, the last ten
days.

5

2. Analysis

2.1 Data Exploration

 As of March 2018, OMX Stockholm Mid Cap Index constitutes in total of 144 shares [10], class
A and class B shares included. However, many shares have missing values for long periods, while others
are not even present at Yahoo! Finance. Stocks that don’t have three years of history will be excluded.
Shares that have absent values for two consecutive months or more, are also excluded as they are
considered to be too unreliable to fit as input data. After this initial screening, the total amount of
stocks used as input are 73, OMX Stockholm 30 Index included, where the latter will be used for
comparison.
 Table 1 displays the top five rows in the raw unprocessed data for share Acando B, ticker
ACAN-B.ST. The data makes up of totally 1302 rows, but will increase daily as the starting date is fixed

at December 27th 2012. This date is chosen arbitrary and for no other reason but to include five years
of stock history in the input data. Only dates when the stock exchange was open and the shares were
traded are presented, leading to an average of roughly 252 rows per year.

The data is represented by six columns, or features. These are Open, High, Low, Close, Adjusted
Close, or Adj Close, and Volume. The first five are related to the stock price, where Open represents
the opening price for each particular day and High the highest price for that particular stock at that
particular date. Low and Close are, consequently, the lowest price and closing price for each particular
date. Adj Close, is the adjusted closing price and has been adjusted to take into account changes in the
stock price due to splits and dividends. It is crucial that this is done as a split can have huge
consequences on the stock price, resulting in 10x changes without the actual value of the company
alters. Running an algorithm on such data would most certainty lead to worthless results. These feature
values are normally in the range of [1, 100]. Lastly, Volume is the number of shares traded each day for
each specific share and it can be in the range of a couple of hundred thousand to some millions.

Table 1: Raw unprocessed data for share Acando B (ACAN-B.ST).

6

Volatility is engineered and added as an additional feature to augment the information on which
the algorithm makes its predictions on. It has a distribution of normally [0,1]. With this extra feature,
each stock now constitutes of roughly 9,100 data points, 1,300 per feature. The entire dataset amounts
to roughly 665,000 data points.

In order to keep track on each individual stock, the stock name will be added to the Date
column. The Date column also serves as index column.

As mentioned earlier, a lot of stocks were excluded due to NaN-values. However, there still
exist such undefined data types among the chosen stocks. They will be solved through pandas’ fillna
function [11]. It is a normal procedure in this kind of task and is taught in Tucker Balch’s Machine
Learning for Trading course [12].

Subsequently, each feature will be normalised according to the first date in the dataset as well
as scaled within the interval [0, 1]. The former is done to make it easier to compare different stocks as
their original values might differ quite a lot, while the latter enables the solution to converge in the first
place as well as to higher final performance [13].

Table 2 displays the pre-processed data for share Acando B after the steps described above
have been applied.

Furthermore, the data will be split 80/20 into training and test sets, leading to 1042 rows of
training data and 260 for testing purpose.

LSTM Networks require the input data to be 3D, in the order (samples, window, and features),
where samples are the number of samples in the dataset and window how far back the model should
base its predictions on. The longer window the more information is fed into the model but the longer
the training time. Features are the number of features in the dataset (7). Hence it needs to be processed
in several steps into a 3D vector in order to be fed into the model.

2.1 Exploratory Visualisation

 In Figure 1 below, normalised Adjusted Close data for Acando B and OMX Stockholm 30 Index
is plotted. The training and test sets for the stock are displayed in green and blue respectively, while
OMX30 Index is shown in orange. Another 71 plots, similar to this and covering each individual stock,
are plotted to display any disturbances in the data. They can all be accessed through this GitHub page.

Table 2: Pre-processed input data for share Acando B (ACAN-B.ST).

7

As we can see from the plot, both graphs display continuous values. which is something our
Machine Learning models require. There is a small gap between the training and test set, however this
is just an ambiguity in the graph as printing the entire data frame shows us that there is no such gap
in the actual data. This is displayed through Table 3, as both the last date (2017-02-22) in the training
and the first date (2017-02-23) in the test sets are present.
 Rather than displaying the scaled values, normalised data has been plotted. Doing so, makes it
easier to identify the price differences. In the case of Acando B, the price has increased by roughly
160% (2,6 – 1,0) and for OMX30 by some 40% during the time period.

Figure 1: Visualisation of share Acando B, where green is the training set and blue is the test set.
OMX30 Index is displayed in orange. All are normalised values for Adj Close.

Table 3: Displaying that there is no gap between training set (below) and test set (above)
in the actual data.

8

2.2 Algorithms and Techniques

2.2.1 LSTM Networks

A Long Short-Term Memory (LSTM) algorithm will be used for both the single and ten-day
predictions. It was first presented by Hochreiter and Schmidhuber 1997 [14], and later improved by
several other research teams. Just as the name implies, LSTM is a model for short-term memory which
can last for a long period of time. It is widely used and works very well on a large amount of different
problems and was explicitly designed to avoid long-term dependency issues. Through its ability to
remember information over long time periods, it’s commonly used for predicting time series. The input
data will be fed into the LSTM as a 3D vector and therefore needs to be pre-processed before.

 Figure 2 illustrates the LSTM structure with its notations. The yellow boxes are neural network
layers, like a sigmoid or tanh layer, while the pink circles represent pointwise operations, such as vector
multiplication or addition. The black single lines represent vectors, carrying information from an output
node to an input node, while merging and diverging lines represent concatenate and copy operations
respectively.

Maybe the most important aspect of LSTMs is the horizontal line, marked with a red oval in
the figure, running from left to right. It’s called the cell state. Information can flow straight through it,
virtually unchanged. However, structures called gates, displayed in Figure 3, can add or remove
information with high precision to the cell state. A gate constitutes of a sigmoid neural network layer
and a pointwise multiplication operation. It returns a number between zero and one, where “zero”
means closing the gate and not letting any information through, while “one” means letting all
information through. Three such gates are built into the LSTM to control and protect the cell state.

The following equations are the compact equivalents of the LSTM architecture described above
[14]:

𝑓5 = 𝜎9(𝑊;𝑥5 + 𝑈;ℎ5>3 + 𝑏;)

Figure 2: The LSTM chain-like structure (above) and its
notation descriptions (below) [17].

Figure 3: An LSTM gate.

9

𝑖5 = 𝜎9(𝑊,𝑥5 + 𝑈,ℎ5>3 + 𝑏,)

𝑜5 = 𝜎9(𝑊A𝑥5 + 𝑈Aℎ5>3 + 𝑏A)

𝑐5 = 𝑓5	 ∘ 𝑐5>3 + 𝑖5 ∘ 𝜎E(𝑊E𝑥5 + 𝑈Eℎ5>3 + 𝑏E)

ℎ5 = 𝑜5 ∘ 𝜎6(𝑐5)

Here 𝑊F and 𝑈F are the weight matrices and 𝑏F is the bias vector which needs to be learned during
training, where z can be either the forget gate f, the input gate i, the output gate o or the memory cell
c. The operator ∘ refers to the Hadamard product and subscripts t refers to the time step.

2.2.2 Loss Function

 What the loss function tells us is how close the predicted values are to the true ones. It is
needed in order to compile the model. The loss function of choice is MSE as it takes into consideration
negative numbers (by squaring them) as well as giving more weight to larger errors.

2.3 Benchmark

 A logistic regression model will be trained and tested on the same data as the LSTM Network
and used as benchmark. The input data is fed into the model as a 2D vector. A MSE of 0.01434 on the
training set and 0.11133 on the test data is achieved. Figure 4 displays the predicted (pink train set and
orange test set) as well as the true values (in green).

Figure 4: Logistic Regression performance on the train and test sets for stock
Acando B.

10

3. Methodology

3.1 Data Pre-processing

 First of all, the stock data needs to be downloaded. As explained earlier, this is done in an
automated way through pandas’ get_data_yahoo function. However, Yahoo! Finance seems to have
become less reliable after the acquisition by Verizon in 2016 as several issues occurred during
downloading. As of this, a RemoteDataError was returned several times when trying to do so. To
mitigate the risk, a @retry function as well as a try and except statement was implemented, allowing
ten tries with one second between each attempt. Each stock is subsequently downloaded in an
individual named dataframe, values are filled forwards and backwards, respectively, through pandas’
fillna function before they are saved in a .csv file. The code is displayed below.

###	Download	and	save	the	data	into	.csv	files	###								
for	i	in	tickers:	
				stock_df	=	get_stock_data(i,	dates)	
				#	Fill	missing	values	forward,	then,	fill	backward	
				fill_missing_values(stock_df)	
				#	Save	the	files	as	.csv	as	well	
				stock_df.to_csv(create_file_path(i))		
	
#@retry	function	to	minimize	the	risk	of	RemoteDataError.		
#	10	retries,	with	one	second’s	pause	between	each	run.	
@retry(stop_max_attempt_number=10)	
def	get_stock_data(ticker,	dates):	
				try:	
								stock	=	data.get_data_yahoo(ticker,	start,	end)	
								stock.sort_index(ascending=False,	inplace=True)	
								return	stock	
				except	RemoteDataError:	
								time.sleep(1)	
								print('Trying	again..')		
	
def	fill_missing_values(data_df):	
				"""Fill	missing	values	forward,	then	backwards"""	
				data_df.fillna(method="ffill",	inplace=True)	
				data_df.fillna(method="bfill",	inplace=True)	

Printing the data after these steps will result in what is displayed in Table 1.
 The data is now stored in .csv files. The following code snip will download it into a data frame,
calculate and add volatility as one of the features as well as change the index name to the stock’s name
+ Date.

#	Count	the	number	of	files	in	the	input	data	directory	
directory	=	'/Users/jakob/Desktop/Programming/Udacity	Machine	Learning	Nano	Degree/Capstone	
Project/Data_Capstone/'	

11

file_paths	=	glob(directory+"*.csv")																																																						#	Get	each	.csv	file	in	the	directory	
	
#	Get	all	the	file	names	
file_names	=	[]	
for	root,	dirs,	files	in	os.walk(directory):			
				for	filename	in	files:	
								filename	=	filename[:-4]																																			#	Just	keep	the	ticker	name,	without	the	.csv	file	extention	
								file_names.append(filename)	
del	file_names[0]	
	
#	Get	the	input	data	from	the	.csv	files	
loaded_stocks	=	[]	
for	i	in	range(len(file_paths)):	
				stock	=	pd.read_csv(file_paths[i],	index_col='Date')	
				stock['Volatility']	=	(stock['High']	-	stock['Low'])	/	stock['Open']		#	Calculate	the	volatility	
				stock.index.names	=	[file_names[i]	+	'__'	+	'Date']																								#	Set	the	index	name	to	stock	name	+	Date	
				loaded_stocks.append(stock)	

The input data is subsequently normalised, per column, according to the first value through the
normalise_data function. Any infinite numbers are set equal to zero and duplicated indices are removed.

def	normalise_data(prices):	
				"""	Normalise	data	stored	in	prices"""	
				if	isinstance(prices,	pd.DataFrame):							#	Check	if	Dataframe	
								prices	=	prices/prices.iloc[-1]														#	normalise	according	to	the	first	value		
				else:																																																													#	if	array	
								prices	=	prices/prices[-1]						
				return	prices			
	
#	Normalize	all	the	stock	prices	
norm_stock_prices	=	[]	
for	i	in	loaded_stocks:	
				norm_d	=	normalise_data(i)	
				norm_d[norm_d	==	np.inf]	=	0										#	if	any	of	the	value	in	norm_d	is	an	infinite	value,	set	it	equal	to	0	
				fill_missing_values(norm_d)	
				norm_d	=	norm_d[~norm_d.index.duplicated(keep='last')]		#	Remove	duplicated	indices	(if	any)					
				norm_stock_prices.append(norm_d)	
	

Plotting the data after these steps will result in what’s displayed in Table 2.
 Some more useful functions for getting the stock data as well as for plotting the data displayed
in Figure 1, are also defined.

def	get_stock(stock_list	,ticker):	
				"""	Returns	the	dataframe	containing	the	stock	with	the	ticker	symbol	ticker.		
								stock_list	is	a	list	of	stock	data	stored	in	dataframes.	"""	
				for	sd	in	stock_list:	
								if	sd.index.name[:-6]	==	ticker:	
												return	sd													
	
def	plot_3it(data_df1,	data_df2,	data_df3,	label1='',	label2='',	label3='',	title=''):	
				"""Plot	the	stock	data	stored	in	data_df1	and	data_df2	in	different	colors.		
								The	entire	dataset	is	stored	in	data_df3.		

12

								label1,	label2	and	label3	are	the	label	names	while	title	is	the	plot	title"""	
				plt.figure(figsize=(10,	5))	
				pl	=	data_df1.loc[::-1].plot(fontsize=12,	figsize=(13,	5),	label=label1,	color='green')		
				plt.plot([None	for	i	in	data_df1.loc[::-1]]	+	[x	for	x	in	data_df2.loc[::-1]],	label=label2,	color='royalblue')	
				plt.plot(data_df3.loc[::-1],	label=label3,	color='darkorange')	
	
				pl.set_title(label=title,	fontsize=20)	
				pl.set_xlabel('Date',	fontsize=15)		
				plt.autoscale(enable=True,	axis='x',	tight=True)					
				pl.set_ylabel('Price',	fontsize=15)	
				plt.legend(fontsize=12,	loc='upper	left')	
				plt.grid(axis='both',	alpha=.5)	
				pl.xaxis.set_major_locator(MaxNLocator(12))	
				temp	=	pd.concat([data_df2,	data_df1],	axis=1)	
				pl.xaxis.set_major_formatter(IndexFormatter(temp.index))	
				plt.xticks(rotation=50,	horizontalalignment='center',	rotation_mode='default')	
				plt.show()			

The input data is now stored in a list, norm_stock_prices, with 73 indices, where each index contains a
stock, stored in a data frame.

To keep the input data for the LSTM Network and the benchmark model apart, the list will be
copied using copy.deepcopy(). This Python inbuilt function is necessary to use as it copies everything
stored in the list and makes them completely independent of each other. Using the normal copy()
function wouldn’t work as changing the value in one would change the equivalent value in the other
as well.

Furthermore, sklearn’s MinMaxScaler function [15] will be used to scale the data in the interval
[0,1]. Given that there are different min and max values in every column, each individual scaler will be
tuned differently. As a result of this, one unique scaler for each column and stock needs to be created,
resulting in a total of 511 scalers. They are stored in an array and can be accessed through the stock’s
name. Subsequently, the data is divided into training and test sets with the relation 80/20. Two lists
will be created, one with normalised values and one with both normalised and scaled values. This will
facilitate later on. The code is displayed below. The lists with the normalised and scaled stocks are
named according to the Logistic Regression model, but up to this point there are no differences in the
pre-processing steps between this and the LSTM model.

#Specify	one	scaler	for	each	column	and	stock	
many_MinMaxScalers	=	{}	
for	i_s	in	range(len(norm_stock_prices)):	
				for	j_s	in	range(7):	
								many_MinMaxScalers["{0}".format(get_ticker(norm_stock_prices[i_s])+str(j_s))]	=	
MinMaxScaler(feature_range=(0,1))	
	
def	MMscale_data(data):	
				"""	A	function	for	scaling	the	data	in	the	dataframe	data"""	
				for	i	in	range(len(data.columns)):	
								data.iloc[:,i]	=	many_MinMaxScalers[get_ticker(data)+str(i)].fit_transform(data.iloc[:,i].values.reshape(-
1,1))	
				return	data	
	
#	Lists	to	store	the	normalised	and	scaled	stocks	

13

LOG_scaled_train_list,	LOG_scaled_test_list	=	[],	[]	
	
#	Create	training	and	test	sets	
for	i	in	range(1,	len(scaled_LOG_stock_prices)):	
				test_size	=	int(len(scaled_LOG_stock_prices[i])	*	0.20)																				#	Specify	the	test	set’s	size	
				MMscale_data(scaled_LOG_stock_prices[i])	
	
				#	Scaled	and	normalized	
				LOG_train,	LOG_test	=	scaled_LOG_stock_prices[i][test_size:],	scaled_LOG_stock_prices[i][0:test_size]	
				#	save	each	one	into	a	list	
				LOG_scaled_train_list.append(LOG_train)	
				LOG_scaled_test_list.append(LOG_test)			

 As explained earlier, the input data for the LSTM Network needs to be a 3D array. In order to
achieve this, the create_LSTM_dataset function is implemented as below. The function will also create
the output data, which will be a 2D array of the Adjusted Close values, as these are the ones we wish
to predict.

#	convert	an	array	of	values	into	a	dataset	matrix.	
def	create_LSTM_dataset(dataset,	window=10):	
				dataX	=	[dataset[i:(i+window),	:]	for	i	in	range(len(dataset)-window)]	
				dataY	=	[dataset[j	+	window,	4]	for	j	in	range(len(dataset)-window)]	
				return	np.array(dataX),	np.array(dataY)	

The create_LSTM_dataset function, with window set to one, returns data equivalent to what’s shown
below.

				Input					Output	
	1			111								114	
	2			114								140	
	3			140								125	
	4			125								129	
	5			129								135

For visualisation purposes, the numbers displayed are not the actual ones. But as can be seen, the
output at time t is equal to the input at time t+1.
Subsequently, the input data is reshaped to (samples, window, and features) using Numpy’s reshape()
function, before it is fed into the LSTM algorithm. The reshape operation is displayed below.

'''reshape	the	input	to	be	[samples,	time	steps,	features]'''	
LSTM10_test_input	=	np.reshape(LSTM10_test_input,	(LSTM10_test_input.shape[0],	
LSTM10_test_input.shape[1],	7))	
	
LSTM10_train_input	=	np.reshape(LSTM10_train_input,	(LSTM10_train_input.shape[0],	
LSTM10_train_input.shape[1],	7))

14

3.2 Implementation

3.2.1 Single Day Predictions with the LSTM Algorithm

 The first step is to create the LSTM architecture. A Sequential model is used, followed by a
LSTM recurrent layer with 20 neurons and input shape [1, 7] (one day’s window size and 7 features). A
0.5 Dropout layer is included, to mitigate overfitting, before a core Dense layer, with output size one
(we want to predict the Adjusted Close price for the next day) and a linear activation function is added.
The code is displayed below.

def	LSTM_model(inputs,	output_size,	neurons,	activ_func="linear",	
																dropout=0.5,	loss="mean_squared_error",	optimizer="adam"):	
				model	=	Sequential()	
				model.add(LSTM(neurons,	input_shape=(inputs.shape[1],	inputs.shape[2])))	
				model.add(Dropout(dropout))		
				model.add(Dense(units=output_size))	
				model.add(Activation(activ_func))	
				model.compile(loss=loss,	optimizer=optimizer)	
				model.summary()	
				return	model	
	
#	Create	the	model	
model	=	LSTM_model(LSTM_train_input,	output_size	=	1,	neurons=20)	

The model is trained by calling the fit() function. Input parameters are, except the in- and
output data, 20 epochs, one batch size and shuffle set to True. A 0.05 validation split is chosen,
meaning that the model will use 5% of the training set to validate on. The model constitutes of a total
amount of 2,261 parameters.

#	Train	the	model	
trained_LSTM	=	model.fit(LSTM_train_input,	LSTM_train_output,	epochs=20,		
																																															batch_size=1,	verbose=1,	shuffle=True,	validation_split=0.05)

Some of the most difficult coding part in this section was actually to plot the predicted values.
Developing the function to plot the results shown in Figure 7 was a tedious task that took many days
of trial and error to get right. The axes need to make sense, the curves needed to get in line, the
zoomed-in plot where calculations for min and max values needed to be calculated all took very long
time. Reshaping the input data to a 3D vector for the LSTM was also a difficult task and took many
days of trial and error to get right.

3.2.2 Ten-Day Predictions with the LSTM

 The LSTM model for ten-day predictions is similar to the single day LSTM model but with an
extra recurrent layer and Dropout added. The model constitutes of a total amount of 72,101
parameters.

15

#	Define	the	LSTM	model	for	10	day	predictions	
def	LSTM10_model(inputs,	output_size,	neurons,	activ_func="linear",	
																																				dropout=0.2,	loss="mean_squared_error",	optimizer="rmsprop"):	
				model	=	Sequential()	
	
				model.add(LSTM(neurons,	input_shape=(inputs.shape[1],	inputs.shape[2]),	return_sequences=True))	
				model.add(Dropout(dropout))	
				model.add(LSTM(neurons*2,	return_sequences=False))	
				model.add(Dropout(dropout))	
				model.add(Dense(units=output_size))	
				model.add(Activation(activ_func))	
	
				model.compile(loss=loss,	optimizer=optimizer)	
				model.summary()	
				return	model	
	
#	Create	the	model	
model_10	=	LSTM10_model(LSTM10_train_input,	output_size	=	1,	neurons=50)

The following function is developed to make predictions for pred_len amount of days
(predict_multiple_sequences) [16].

def	predict_multiple_sequences(model,	data,	window_size,	pred_len):	
				"""	Make	a	sequence	of	predictions	of	pred_len	steps	before	shifting	prediction	run	forward	by	pred_len	
steps."""	
				prediction_seqs	=	[]	
				for	i	in	range(int(len(data)/pred_len)):	
								curr_frame	=	data[i*pred_len]	
								predicted	=	[]	
								for	j	in	range(pred_len):	
												predicted.append(model.predict(curr_frame[np.newaxis,:,:])[0,0])	
												curr_frame	=	curr_frame[1:]	
												curr_frame	=	np.insert(curr_frame,	[window_size-1],	predicted[-1],	axis=0)	
								prediction_seqs.append(predicted)	
				return	prediction_seqs	

 A difficult task regarding the ten-day predictions was definitely the predict_multiple_sequences
function displayed above. It took many days of searching and investigation before I found a previous
solution (referenced to above) that I could benefit from.

3.3 Refinement

3.3.1 LSTM Single Day Predictions

 Several combinations of different kind of parameters were tested before the final solution was
obtained. As it turned out, using a sigmoid or tanh activation function resulted in substantial overfitting
and, as a consequence, bad results on the test data. The training time was roughly the same as for the
final choice. An advanced LeakyReLU activation layer resulted in slightly worse results (0.000262 on
the train set and 0.000374 on the test set).

16

 Adamax optimizer resulted in a higher MSE with slight overfitting and required more training
time, while RMSprop, Stochastic gradient decent and Adagrad optimizers overall achieved worse
results.
 During fitting, Dropouts 0.2, 0.3, 0.4, 0.6 and 0.7 were tested out, all with worse results than
the final choice of 0.5. Batch sizes of 2, 5 and 10, setting shuffle to False as well as different validation
splits (0.1, 0.15 and 0.2) were tested out but with worse results. An architecture equivalent to the one
used in the ten-day predictions was also tried out but with worse results in relation to training time.
 It shall also be mentioned that training the model on normalised, rather than scaled, data
resulted in roughly 250 times higher MSE.

3.3.2 LSTM Ten-Day Predictions

 A total amount of 1,440 models were tested out for the ten-day predictions. As it turned out,
each stock needed an individual model, and as a result 20 different models were tested out on the 72
stocks. This was a tedious task and required 36 hours of automated non-stop training, testing and
plotting. A combination of different window lengths [10 or 20], batch sizes [1, 2, 10, 50, 100] and
epochs [1, 2] were trained and compared. Slightly surprising was that fewer epochs in general resulted
in better result. Figure 5 displays this as it is the final model trained with ten epochs rather than with
one as is the final choice. The best model for each stock was subsequently saved for further use.
 The simpler architecture, as for the single day predictions, was also tested out, but with higher
errors a well as with bad visualized predictions when plotted.

Figure 5: LSTM ten-day predictions with ten training epochs.

17

4. Results

4.1 Model Evaluation and Validation

4.1.1 LSTM Model for Single Day Predictions

After the wide combination of parameters, described in chapter 3.3.1, were tested out, the
model with the lowest test error was chosen. The returned MSE on the training set was 0.000263 and
0.000363 on the test set. The error on both the training and test set is very small, allowing us to be

Figure 6: Training error on LSTM, single day predictions

Figure 7: LSTM single day performance on the training and test sets on stock Acando B

18

fairly confident in our assumption that the model has not been over fitted on the train set. The training
error is plotted and displayed in Figure 6. Already after 5 epochs the error has decreased significantly,
with little difference the forthcoming 15 epochs.

The performance on both the train and test set is plotted in Figure 7, allowing us to confirm
that the predictions matches the true data very well. There are some prediction misses in the beginning
of the train data, and up to roughly May 2014, but overall, the visualised predictions are very good. The
zoomed in square displays the result in higher resolution and confirms our initial observations.

Several runs with new and updated data (between the 15th of February and the 8th of March)
have been tested out with similar results but some differences in training time and MSE. Comparing
the reported results above (from the 2nd of March) with the ones obtained the 8th of March, the latter
achieves a MSE of 0.000228 on the train set and 0.0011775 on the test set. It is a worse result, but
still acceptable to be at least fairly trusted.

The same model with the same parameters can be used on all the 72 stocks. However, it needs
to be trained on each one of them individually before it can return reliable predictions on that particular
stock.

4.1.2 LSTM Model for Ten-Day Predictions

 When it comes to the ten-day predictions, 72 slightly different models were necessary in order
to return results that were, at least initially, acceptable. All the 1,440 combinations described in chapter
3.3.2 were tested out and the model with the best visual predictions, combined with the lowest MSE
on the test set was hand-picked for each individual stock. That is, the model whose predictions
matched the true values best, and hade the lowest MSE on the test set, was chosen. Surprisingly, the
fewer number of epochs used for training, the better the results seemed to be, as displayed in chapter

Figure 8: LSTM ten-day predictions on the test set, one epoch, Acando B.

19

3.3.2. This is very contradictory to what’s usually the case for machine learning predictions and might
raise some doubts concerning the models’ robustness and validity.
 All the models that in the end were chosen to make ten-day predictions were trained using
either one or two epochs. For this reason, the training error wasn’t plotted, as plotting one or two dots
doesn’t make much of a sense. In the case of Acando B, one epoch was used with a resulting MSE of
0.000725 on the training set and 0.001884 on the test set. Both errors are fairly small, allowing us to
make the assumption that the model hasn’t been over fitted. Figure 8 displays the ten-day predictions
in relation to the true data for stock Acando B.
 The models turned out to be very unstable and unreliable however. Training and testing the
models on newer input, containing only a few extra lines of data, often resulted in something similar to
what is displayed in Figure 5. This was a repeating problem, leading to the assumption that a new model
needs to be found each time new data is presented. The conclusion must therefore be that the models
don’t generalise well on unseen data and, thus, cannot be trusted.

4.2 Justification

 Comparing the MSE of the Logistic Regression’s single day predictions (0,01434 on the train
set and 0,11133 on the test set) with the LSTM model’s single day predictions (0.000263 on the train
set and 0.000363 on the test set) gives us a quite uniform picture of their performance. The Logistic
Regression model returns a MSE roughly 55 times higher on the train set and 307 times higher on the
test set than the LSTM model returned. This is a huge difference in performance between the two
models.

Furthermore, looking at the plotted predictions (Figure 4 for Logistic Regression and Figure 7
for the LSTM model) confirms this difference visually. Not only does the LSTM model follow the true
values much better, both on the train and test data, but also is it, in general, more reliable when the
input data is altered or when other stock data is processed. The Logistic Regression model also predicts
some complete erroneous spikes or noises in August 2014 and February 2015 roughly, as seen in the
above-mentioned figure. For some stocks, this is even worse, as is the case for ANOD-B.ST for example,
where the spikes’ values are some 30 times higher than the actual data. This can be viewed through
the following link. It happens despite the MSE values being very low.

However, the predictions returned by the single day LSTM model might be deceptive as it has
all the earlier days to base its predictions on. As such, the next day’s value will probably not be far from
today’s value. Even though the prediction will be wrong, it can still consider the true value and discard
the prediction in order to make the next day’s prediction. The model could by this just chose a random
value, close to today’s, for tomorrow’s prediction, allowing the model to have virtually no substance
behind it but still come up with close “predictions”.

With this argument in mind, taking the much higher performing LSTM model for making ten-
day predictions is an interesting analysis to make (plotted in Figure 8). The predictions don’t seem to
be completely random and there might actually be some substance behind the output. Many of the
predictions seem reasonable. Taking the first, orange, prediction as an example, we’ll find decreasing
predicted values while at the same time the true values initially do so as well, before they bounce up.

20

The model failed to predict this last bounce up, but succeeds in catching the initial movement. The
green, second, prediction seems promising as the line isn’t just a straight one. Instead, it changes
direction which raises some hope that the LSTM model has found some kind of pattern and isn’t blindly
throwing out predictions in one single direction. Nevertheless, many of the predictions are incorrect
and some are completely useless, e.g. the fifth, brown, prediction. The true values are increasing
intensely, while the model predicts a strong decrease.

It seems that roughly half of the predictions are fairly correct, something that, at least for me,
isn’t good enough in order to trust them. However, we shouldn’t be too surprised that the returned
predictions, based purely on a technical analysis are poor. There are so many underlying factors that
influence the daily price movements. Market psychology, fundamental changes in the company, macro
events, investors’ decisions or market noise are just some factors that aren’t considered in these
predictions.

Taking these aspects into consideration, as well as those discussed in section 4.1.2, about the
model’s high instability, it must be concluded that the ten-day predictions aren’t reliable and, thus, the
model hasn’t solved the initial problem.

The single day predictions for the LSTM Network outperforms the Logistic Regression model
by a large margin. But there are still some concerns raised regarding the significance of the model and
it can’t be completely concluded that the model actually has solved the problem.

21

5. Conclusions

5.1 Reflections

 During this project, 72 stocks in the Stockholm Mid Cap Index were downloaded along with
the Stockholm OMX 30 Index. The 73 datasets were downloaded in an automated way to facilitate
future updates and saved into .csv files on the computer. Subsequently, they were pre-processed by
removing any disturbances such as NaN-values, before they were scaled and normalised for better
model performance.

The next step was to reshape the data to a 3D vector to fit it into the LSTM Network, whose
architecture was made up of two different types, one simple and one slightly more complex. The simple
one was used for single day predictions, while the more complex was used for ten-day predictions.
Different kind of architectures and more than 1,400 different parameter combinations were tested out
to get the best performing models. For single day predictions, one model was reliable enough to be
used on all the stocks, provided that it was trained on each stock before, while for the ten-day
predictions an individual model for each one of the 72 stocks was needed.

The single day prediction model returned very good values, even though it can’t be concluded
that it solved the problem, while the ten-day predictions models were too unreliable to solve the
problem.

One of the more difficult aspects in the project was actually to plot the predicted values. The
plot_LSTM function, displayed in chapter 3.2.1, took very long time to develop as there were many
small aspects to take into consideration. Clearly formatted and designed axes, get the plotted values
at their correct positions, the zoomed in plot, where coordinates and locations needed to be elaborated

Figure 9: The function plot_LSTM used to plot the predicted values for stock Addnode Group B

22

and calculated properly, all took very long time to develop. Figure 9 displays the predicted values for
stock Addnode Group B when this function was used. The displayed results are actually among the
worse for the LSTM single day model.

Preparing the input data for the LSTM Network was another task that took a lot of time and
many tries before I got it right.

The most interesting aspect was probably trying to create a model for the ten-day predictions.
As it turned out, the models were way too unreliable and didn’t generalise well to unseen data, but it
was fun to see that the predictions weren’t just straight, more or less, random lines.

I didn’t have high expectations on whether I’d be able to predict the future stock prices even
though there are more inefficiency on a Mid Cap Index which could be exploited. The single day model
might be useful if elaborated some more, but the ten-day models should by no means be used for
buying and selling on the stock market.

5.2 Improvements

I. More features as input data might improve the results, both engineered and downloaded, as
well as longer stock history. With more input data for the model to base its predictions on
the results might improve as this in general is the case in Machine Learning.

II. Considering other input data such as fundamental company information or market news
and analyse it with deep learning. Google’s Deep Mind project is doing something similar and
it might add some more fundamental information to these purely technical based predictions.

III. Try other ML algorithms such as Facebook’s Prophet algorithm, more complex LSTM
architectures or other algorithms I haven’t heard of. Or a combination of them.

23

Bibliography

	
[1] R. A. Mundell, “The Birth of Coinage,” Department of Economics, Columbia University, New York, 2002.

[2] D. Sheehan, “Predicting Cryptocurrency Prices With Deep Learning,” 21 11 2017. [Online]. Available:
https://dashee87.github.io/deep%20learning/python/predicting-cryptocurrency-prices-with-deep-
learning/. [Accessed 21 03 2018].

[3] A. C. Andersen and S. Mikelsen, “A Novel Algorithmic Trading Framework Applying Evolution and Machine
Learning for Portfolio Optimization,” Department of Industrial Economics and Technology Management
(IØT), Trondheim, 2012.

[4] “Yahoo! Finance,” 02 03 2018. [Online]. Available: https://finance.yahoo.com. [Accessed 02 03 2018].

[5] J. Brownlee, “machinelearningmastery.com,” 24 05 2016. [Online]. Available:
https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/. [Accessed 02 03 2018].

[6] J. Brownlee, “machinelearningmastery.com,” 14 08 2017. [Online]. Available:
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/. [Accessed 02 03
2018].

[7] “Core Layers,” [Online]. Available: https://keras.io/layers/core/#dense. [Accessed 03 03 2018].

[8] “Recurrent Layers,” [Online]. Available: https://keras.io/layers/recurrent/#lstm. [Accessed 03 03 2018].

[9] “Model (functional API),” [Online]. Available: https://keras.io/models/model/. [Accessed 03 03 2018].

[10] Avanza Bank Holding, “Avanza.se,” Avanza Bank Holding, [Online]. Available:
https://www.avanza.se/aktier/lista.html. [Accessed 03 03 2018].

[11] Open Source, “pandas 0.22.0 documentation,” 30 12 2017. [Online]. Available:
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html. [Accessed 04 03
2018].

[12] T. Balch and D. Dave, “Lesson 6, Incomplete data,” [Online]. Available:
https://classroom.udacity.com/courses/ud501/lessons/3909458794/concepts/42693317700923.
[Accessed 03 03 2018].

[13] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift,” Cornell University Library, 2015.

[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” M+nchen/Lugano, 1997.

[15] Pedregosa et al., “Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830,,” 2011. [Online].
Available: http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html.
[Accessed 07 03 2018].

[16] J. Aungiers, “LSTM Neural Network for Time Series Prediction,” 21 12 2016. [Online]. Available:
http://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-for-Time-Series-Prediction. [Accessed
8 03 2018].

[17] C. Olah, “Understanding LSTM Networks,” 27 08 2015. [Online]. Available:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 06 03 2018].

